본문 바로가기

수학15

적분의 실생활 활용 [3D 프린터] 일반적으로 프린터는 컴퓨터에 나타난 글자나 그림을 종이에 그리는 기계를 의미한다. 그런데 이제는 컴퓨터에 나타난 3차원 설계도를 3D 프린터로 구현할 수 있다.3D 프린터는 1984년 미국의 3D 시스템즈사가 플라스틱 액체를 굳혀 물건을 만드는 프린터를 세계 최초로 개발하면서 그 역사가 시작됐다.최근 3D 프린팅 기술의 특허가 만료되면서 누구나 쉽게 기술을 사용할 수 있게 되었기 때문에 연구가 활발히 진행되자 사람들의 관심을 끄는 연구도 나오게 된 것이다.3D 프린터로 만든 제품을 만져보면 겉표면이 거칠거칠하다. 한 층씩 쌓아 올리는 방식으로 만들어서 그렇다. 3차원 제품을 가로축을 기준으로 2차원 평면이 되도록 잘게 쪼갠 다음, 아래에서부터 한 층 한 층 쌓아 올린 것이다.이런 원리는 .. 2020. 8. 28.
미분의 발명과 분쟁 1675년에 독일의 저명한 철학자이자 수학자인 라이프니츠는 『분수에도, 무리수에도, 장애 없이 적용할 수 있는, 극대와 극소, 또한 접선에 대한 새로운 방법, 그리고 그것을 위한 특이한 계산법』이라는 긴 제목의 수학 논문을 발표하였는데, 이것이 미분학의 발명을 둘러싼 논쟁의 시발점이 되었다.라이프니츠가 이 논문을 발표하기 10년 전, 이미 미분을 아이작 뉴턴이 알고 있었다. 뉴턴은 타원이 회전할 때 순간의 속도를 유율이라 정의하였는데 이것이 미분의 개념이다. 그는 이러한 개념을 동료의 권유로 책으로 출판하려 했지만 조금 미루다 결국 라이프니츠가 먼저 미분을 발표하게 된 것이다. 영국의 수학자들은 뉴턴이 미분의 창시자라고 생각했지만, 라이프니츠의 추종자들은 뉴턴이 그의 이론을 표절한 것이라 생각했다.그러던.. 2020. 8. 25.
생활 속의 미분 활용 [무인 단속 카메라] 고정식 무인카메라는 일종의 감지선으로 카메라 전방 20~30m 앞에 사각형으로 그려져 있는 루프 방식이다. 도로에 속도를 읽는 센서를 내장한 두 줄의 루프를 깔고, 그 사이를 지나는 차의 '시간'을 측정해 '속력'으로 환산하는 것이다.'속력=거리÷시간'이라는 공식에 따라 센서값의 평균변화율을 계산하여 과속이 인지되면 곧바로 카메라 플래시가 번쩍 터지면서 사진을 찍게 되는 원리로 되어 있다. [애니메이션] 물의 움직임을 나타내는 시뮬레이션은 유체역학 이론을 기초로 한다. 공기나 물의 흐름을 설명할 수 있는 미분방정식의 일종인 '나비에-스토크스 방정식'이 설계의 기본이다. '나비에-스토크스 방정식'은 백만 달러의 상금이 걸려 있는 세계 7대 수학 난제 중 하나이다. 아직 방정식의 해를 .. 2020. 8. 24.
극한의 엄밀한 정의 미적분을 공부하다 보면 코시라는 수학자의 이름을 자주 듣게 된다. 특히 '코시-슈바르츠의 부등식'을 알고 있는 사람이면 코시라는 수학자의 이름을 이미 들어 봤을 것이다.그는 수학과 물리학에 업적이 많다. 특히 극한이라는 개념의 엄밀한 정의를 만드는데 기초를 마련한 사람이다. 또한 과학아카데미에서 논문의 분량을 4페이지로 제한한 이유가 코시의 논문 양이 매우 많아서였기 때문이었다고 하는 웃지 못할 일화의 주인공이기도 하다.코시는 프랑스 혁명 시기에 파리에서 태어났다. 정치적 혼란으로 인해 자주 이사를 했기 때문에 아버지에게 교육을 받았다. 그런데 당대 최고의 수학자인 라플라스와 라그랑주에게 재능을 인정받아 그들은 그에게 수학 공부를 권유하게 되었다. 1805년에 에콜 폴리테크니크에 입학하여 공학을 전공하고.. 2020. 8. 23.
테셀레이션의 아버지 Escher M.C. Escher는 네덜란드 출신의 판화가이다. 그의 작품들은 동일한 모양을 이용해 틈이나 포개짐 없이 평면이나 공간을 완전하게 덮는 '테셀레이션(Tessellation)'이라는 독특한 분야에 일가견이 있는 사람이었다. 단순한 기하학적 무늬에서 수학적 변환을 통한 반사, 미끄럼 반사, 평행이동, 회전의 기법을 이용해 정삼각형, 정사각형, 정육각형을 변형하여 동물, 새, 도마뱀, 개, 나비, 사람 등의 여러 형태로 변형시켰다. 그의 작품 가운데 『원형극한Ⅲ』은 테셀레이션의 기법을 이용하여 반복되는 그림의 극한을 잘 보여주고 있다.그리고 『뫼비우스의 띠Ⅱ』에서 안과 밖이 구별되지 않는 뫼비우스의 띠를 무한히 반복되는 개미들의 행진으로 보여주고 있다. 그는 폴리아라는 수학자가 스케치한 17개의 벽지 디자인.. 2020. 8. 21.
톨스토이 문제 러시아의 대문호 톨스토이는 어려운 문제를 즐겨서 풀었지만 늘 교묘한 방법으로 풀어서 주위를 깜짝 놀라게 했다. 다음은 그가 낸 문제이다. 농부들이 밭 두 뙈기의 풀을 베려고 한다. 그 중 한 풀밭은 다른 풀밭의 넓이의 2배라고 한다.농부들은 큰 풀밭에서 반나절 동안 풀을 벤 다음, 두 조로 나누어 절반은 계속 큰 풀밭에서 풀을 베고 나머지 절반은 작은 풀밭에서 풀을 벤다고 한다.저녁 무렵에 큰 풀밭의 풀은 다 벴는데 작은 풀밭은 아직도 풀이 남아 있었다.이튿날 어제 벴던 농부 중 한 사람을 다시 보내서 작은 풀밭을 베게 했는데 하루가 걸렸다.풀을 벤 농부의 수는 모두 몇 명이었나? 농부들의 풀을 베는 능력은 같은 것으로 하자. 톨스토이는 그림을 그려가면서 농부의 수를 구했다.전체 농부들이 반나절 동안 큰.. 2020. 8. 8.
GPS와 삼각함수 위성에서 보내는 신호를 수신해 사용자의 현재 위치를 알려주는 시스템인 GPS(Global Positioning System)는 1970년대 폭격의 정확성을 높이기 위해 미국 국방성에서 최초로 개발한 것이다.실제로는 인공위성이 알려주는 건 장소가 아니라 인공위성 자신의 위치와 현재 시간이다. GPS 수신기는 어떻게 자신의 위치를 알게 될까? GPS 수신기를 이용하여 자신의 위치를 알 수 있게 하는 원리 속에는 삼각함수의 개념이 들어가 있다. 흔히 인공위성이 자신의 위치를 GPS 수신기에 가르쳐 준다고 알고 있다. 하지만 인공위성은 각자의 위치를 가르쳐 줄 수 있는 것이 아니라 인공위성 자신의 위치와 시간을 GPS 수신기에 가르쳐 주고 있는 것이다.정확히 GPS의 원리는 위성과의 거리를 측정하는 데 있다.G.. 2020. 8. 7.
생활 속 지수와 로그 [반감기]2011년 일본 후쿠시마에서는 지진해일로 원전이 부서져 많은 오염수와 방사능의 누출이 있었다.원자로의 핵연료로 사용하는 우라늄(U-235)이 붕괴하면 플루토늄, 세슘, 스트론튬, 아이오딘, 삼중수소 등의 방사성 원소들이 만들어진다.이 방사성 원소들에게는 반감기가 있다. 반감기란 방사성 원소가 반으로 붕괴되는 시간을 나타낸다.그런데 방사성 원소가 반으로 줄어드는데 시간이 일정하다는 특성이 있다. 예를 들어 100g의 방사성 원소가 50g으로 줄어드는데 4시간이 걸렸다면 50g에서 25g으로 줄어드는 데도 4시간이 걸린다. 다시 25g이 12.5g으로 줄어드는 시간도 4시간이다. 이렇게 절반으로 줄어드는데 걸리는 시간이 일정한 경우를 '지수함수적 붕괴'라고 한다. [베버-페히너의 법칙]독일의 학자 .. 2020. 8. 7.
생활 속에 숨어 있는 함수 1. 무더운 여름철 방송에서 "오늘은 불쾌지수가 77 정도로 약 50%의 사람들이 짜증스러움을 느끼므로, 조금만 감정을 다스려 편안한 하루를 보내시길 바랍니다."라고 보도하는 것을 듣는다.다음은 불쾌지수에 따라 불편함을 느끼는 사람들의 비율이다.68 미만 : 0%68~75 : 10%75~80 : 50%80~86 : 90%86 이상 : 100%불쾌지수란 온도와 습도에 관한 함수이다. 불쾌지수 계산은 다음과 같이 구한다.건습계의 건구 온도계와 습구 온도계가 나타내는 온도를 각각 K, S라고 하면,불쾌지수(u)는 u=(K+S)×0.72+40.6 으로 정의된다. 2. 간식 값 내기, 벌칙 정하기, 데이트 상대 정하기 등을 할 때, 자주 이용되는 것이 사다리타기 게임이다. 사다리타기 게임에서 어떤 사다리를 만들더.. 2020. 8. 3.
페르마의 마지막정리 다음의 정리를 『페르마(Fermat)의 대정리』 혹은 『Fermat의 마지막정리』라고 한다. 페르마는 직업적인 수학자가 아니라, 툴르즈 지방 의회에 소속된 법률가이자 치안 판사였다. 그는 수학에 대한 정규 교육을 받은 적도 없었지만, 수학에 강렬한 애착을 갖게 되었다. 그는 자신의 생존 기간 중 수학에 대해 사실상 아무 것도 출판하지 않았다. 그러나 그는 당시의 위대한 수학자들과 매우 많은 서신 왕래를 하였다.이 유명한 마지막정리의 형식화에 이르는 과정은 매우 흥미롭다. 1453년 콘스탄티노플이 터키에 의해 함락되었을 때 비잔틴 학자들은 고대 그리스 문헌을 갖고 서유럽으로 피신했다. 그 중에는 당시까지 보관되던 디오판토스의 산학(arithemetica)이 있었다. 이 책은 후에 1621년 중 그리스 문헌.. 2020. 7. 16.
세상의 모든 공식 - 존 M. 헨쇼 ◆ 세상에는 오로지 10가지 인간이 존재할 뿐이다. 이진법을 아는 인간과 그렇지 못한 인간. ◆ π와 관련된 경쟁은 또 있다. 이 경쟁은 더 오싹하다. 여기에는 귀와 귀 사이의 피와 살로 된 컴퓨터가 동원된다. 바로 π값 외우기 경쟁이다. 기록이 꾸준히 갱신된 끝에, 현재 기록보유자는 6만 7,890자릿수까지 외워서 기네스북에 오른 어떤 중국인이다. 이 사람은 총 24시간 4분에 걸쳐서, 숫자 하나당 1.28초의 속도로, π를 6만 7,890자리까지 한 번도 틀리지 않고 암송했다. ◆ 수학자 겸 작가 데이비드 웰스(David Wells)가 수학공식의 아름다움을 평가하는 나름의 판단기준을 제시했다. 웰스에 따르면, 아름다운 수학공식의 조건은 단순함, 간결함, 중요성, 놀라움이다. 오일러 항등식(Euler'.. 2019. 11. 5.
생활 속의 미분적 사고 변화를 연구하는 미분학에서는 미분적 사고를 필요로 한다.아래의 그림과 같이 곡선 의 아주 작은 부분만을 따로 떼어 직선으로 생각하는 것은 미분적 사고의 한 예이다. 우리 생활 전반에 걸쳐 찾을 수 있는 미분적 사고를 살펴보자. 1. 박물관의 토기박물관에 진열되어 있는 토기는 멋진 곡면이지만 토기를 발굴할 당시에는 모두 조각나 있었을 것이다. 이 작은 조각은 곡면의 일부이지만 거의 평평하다. 2. 지구 표면인공위성에서 찍은 사진을 보면 알 수 있듯이 ‘지구는 둥글다.’는 것은 사실이다. 하지만 ‘내가 서 있는 부근’만을 생각하면 평평하다. 3. 컴퓨터 단층 촬영병원에서 사용하는 컴퓨터 단층 촬영(CT)은 사람의 몸의 내부를 얇게 자른 형태로 계속하여 사진을 찍어나간 후 그중에서 필요한 부분의 사진을 한 장.. 2013. 3. 4.
수학에 관한 명언들 ◆ 수학이 너의 영혼의 눈을 뜨게 한다. - Platon ◆ 수학을 공부하는 것은 정신 체조를 하는 것이다. - Johann Heinrich Pestalozz ◆ 수학은 비판적 사고력을 키운다. - Polya ◆ 신(神)이 대충 닫은 문틈으로 우주를 보는 게 수학이다. ◆ 사색이 없는 수학은 수학으로서의 가치가 없다. ◆ 성공 방정식 : S = X + Y + Z (S=성공, X=말을 많이 하지말 것, Y=생활을 즐길 것, Z=한가한 시간을 가질 것) - Albert Einstein ◆ 수학은 과학의 여왕이고, 산술은 수학의 여왕이다. - Karl Friedrich Gauss ◆ 수학적 발견의 원동력은 논리적인 추론이 아니고 상상력이다. - August de Morgan ◆ 수학을 공부하지 않은 대부분 사.. 2011. 5. 12.
에셔의 불가능한 도형들 1958년 펜로즈가 영국 심리학 저널에 '불가능한 대상 : 시각적 착시의 특별 형태'라는 용어를 사용하여 네델란드의 화가 에셔의 작품 "Belvedere," "Ascending and Descending"과 "Waterfall"을 소개함으로써 불가능한 도형이 세상에 널리 알려지게 되었다. 그래서 위의 불가능한 세 막대 도형은 '펜로즈의 삼각형'으로 불리고 있다. "Belvedere" 이 그림은 에셔의 1958년 작품으로 '전망대' 중 일부분이다. 어느 기둥이 앞에 있는 기둥일까? "Ascending and Descending" 이 그림은 에셔의 1960년 작품으로 '올라가기와 내려가기' 중 일부분이다. 가장 높은 부분은 어디일까? "Waterfall" 이 그림은 에셔의 1961년 작품으로 '폭포' 중 일.. 2011. 5. 11.
죄수의 모자 세 죄수에게 검은 모자 두개와 흰 모자 세개를 보여주면서, 각자의 머리에 모자를 씌울테니 자기 모자의 색깔을 아는 사람을 석방하겠다고 했다. 세 사람에게 모두 흰 모자를 씌웠는데 한참을 서로 쳐다보기만 하다가 갑자기 한 죄수가 자기는 흰 모자를 쓰고있다고 말했다. 그는 어떻게 자신이 쓴 모자의 색깔을 맞출 수 있었을까?? 세 죄수를 A, B, C라 하고 C의 입장에서 생각해보자. C의 눈에는 흰 모자 두개만이 보인다. C의 모자가 검은 색이라면 A와 B에게는 흰 모자 한개, 검은 모자 한개가 보일 것이다. 그런데 B의 입장에서 생각해보면, 만약 B의 모자가 검은 모자라면 A의 눈에는 B와 C의 검은 모자 두개가 보일 것이고 문제의 조건에서 검은 모자가 두개뿐이므로 A가 자기 모자의 색깔(즉, 흰색)을 알.. 2011. 4. 2.