본문 바로가기

수학자12

삼각비의 어원과 탈레스 삼각법(trigonometry)이란 그리스어 trigon(삼각형)과 metria(측정)의 합성어이다. 이는 삼각비를 이용하여 삼각형의 변의 길이, 각의 크기 등을 계산하는 것을 뜻한다. 삼각법에 사용되는 기호 sin, cos, tan는 각각 sine, cosine, tangent의 줄임말이다. 영어 sine은 라틴어 sinus에서 온 것으로 알려져 있다. sinus의 뜻은 매우 다양해서 길의 커브, 땅의 움푹 들어간 곳, 꼬불꼬불한 길 등을 비롯하여 해안의 만(灣), 가슴 등을 뜻하기도 한다. 본래 인도의 수학자 아리아바타는 사인에 해당하는 것을 ardha-jya 또는 jya-ardha라 하고, 이 단어를 줄여서 단지 jya라고 하였다. 이후에 아랍 사람들이 jya를 음역해서 jiba라는 단어를 만들어냈.. 2023. 7. 25.
미분의 발명과 분쟁 1675년에 독일의 저명한 철학자이자 수학자인 라이프니츠는 『분수에도, 무리수에도, 장애 없이 적용할 수 있는, 극대와 극소, 또한 접선에 대한 새로운 방법, 그리고 그것을 위한 특이한 계산법』이라는 긴 제목의 수학 논문을 발표하였는데, 이것이 미분학의 발명을 둘러싼 논쟁의 시발점이 되었다. 라이프니츠가 이 논문을 발표하기 10년 전, 이미 미분을 아이작 뉴턴이 알고 있었다. 뉴턴은 타원이 회전할 때 순간의 속도를 유율이라 정의하였는데 이것이 미분의 개념이다. 그는 이러한 개념을 동료의 권유로 책으로 출판하려 했지만 조금 미루다 결국 라이프니츠가 먼저 미분을 발표하게 된 것이다. 영국의 수학자들은 뉴턴이 미분의 창시자라고 생각했지만, 라이프니츠의 추종자들은 뉴턴이 그의 이론을 표절한 것이라 생각했다. 그.. 2020. 8. 25.
극한의 엄밀한 정의 미적분을 공부하다 보면 코시라는 수학자의 이름을 자주 듣게 된다. 특히 '코시-슈바르츠의 부등식'을 알고 있는 사람이면 코시라는 수학자의 이름을 이미 들어 봤을 것이다. 그는 수학과 물리학에 업적이 많다. 특히 극한이라는 개념의 엄밀한 정의를 만드는데 기초를 마련한 사람이다. 또한 과학아카데미에서 논문의 분량을 4페이지로 제한한 이유가 코시의 논문 양이 매우 많아서였기 때문이었다고 하는 웃지 못할 일화의 주인공이기도 하다. 코시는 프랑스 혁명 시기에 파리에서 태어났다. 정치적 혼란으로 인해 자주 이사를 했기 때문에 아버지에게 교육을 받았다. 그런데 당대 최고의 수학자인 라플라스와 라그랑주에게 재능을 인정받아 그들은 그에게 수학 공부를 권유하게 되었다. 1805년에 에콜 폴리테크니크에 입학하여 공학을 전공.. 2020. 8. 23.
테셀레이션의 아버지 Escher M.C. Escher는 네덜란드 출신의 판화가이다. 그의 작품들은 동일한 모양을 이용해 틈이나 포개짐 없이 평면이나 공간을 완전하게 덮는 '테셀레이션(Tessellation)'이라는 독특한 분야에 일가견이 있는 사람이었다. 단순한 기하학적 무늬에서 수학적 변환을 통한 반사, 미끄럼 반사, 평행이동, 회전의 기법을 이용해 정삼각형, 정사각형, 정육각형을 변형하여 동물, 새, 도마뱀, 개, 나비, 사람 등의 여러 형태로 변형시켰다. 그의 작품 가운데 『원형극한Ⅲ』은 테셀레이션의 기법을 이용하여 반복되는 그림의 극한을 잘 보여주고 있다. 그리고 『뫼비우스의 띠Ⅱ』에서 안과 밖이 구별되지 않는 뫼비우스의 띠를 무한히 반복되는 개미들의 행진으로 보여주고 있다. 그는 폴리아라는 수학자가 스케치한 17개의 벽지 디자.. 2020. 8. 21.
페르마의 마지막정리 다음의 정리를 『페르마(Fermat)의 대정리』 혹은 『Fermat의 마지막정리』라고 한다. 페르마는 직업적인 수학자가 아니라, 툴르즈 지방 의회에 소속된 법률가이자 치안 판사였다. 그는 수학에 대한 정규 교육을 받은 적도 없었지만, 수학에 강렬한 애착을 갖게 되었다. 그는 자신의 생존 기간 중 수학에 대해 사실상 아무 것도 출판하지 않았다. 그러나 그는 당시의 위대한 수학자들과 매우 많은 서신 왕래를 하였다. 이 유명한 마지막정리의 형식화에 이르는 과정은 매우 흥미롭다. 1453년 콘스탄티노플이 터키에 의해 함락되었을 때 비잔틴 학자들은 고대 그리스 문헌을 갖고 서유럽으로 피신했다. 그 중에는 당시까지 보관되던 디오판토스의 산학(arithemetica)이 있었다. 이 책은 후에 1621년 중 그리스 문.. 2020. 7. 16.
비에타의 방법 프랑스 앙리 4세의 궁정 고문관이며 수학자인 프랑수아 비에타(1540~1603)는 대수적 표기법을 개선하는 결정적인 단계를 밟았다. 유클리드 시대 이래로, 문자는 방정식에 들어갈 양을 나타내는 데 사용되었으나 찾아야 할 '미지(未知)의 양'과 알고 있다고 가정된 '기지(旣知)의 양'을 구별하는 방법은 없었다. 비에타는 알파벳의 대문자 중 모음은 현재 변수라 부르는 '미지의 양'을 나타내고, 자음은 주어진 것으로 가정된 '기지의 양'을 나타내자고 제안하였다. 간단하지만, 이런 관례는 계수가 지정된 수인 특정한 예를 다루어야만 했던 대수학을 해방시키는 엄청난 결과를 초래했다. 비에타의 문자 표기법이 도입되기 전에는 특정한 방정식에만 관심을 두어야 했다. 즉, 또는 과 같은 개별적인 방정식에 대한 그 자체의 .. 2015. 6. 30.
기약다항식 판정법 자연수를 소인수분해하면 그 자연수에 대하여 보다 많은 것을 알게 된다. 자연수의 소인수분해의 중요성은 일찍부터 알려져 있었으며 여러 가지 계산에 소인수분해를 이용하였다. 유클리드(Euclid ; ? B.C. 325~? B.C. 265)의 원론(Elements)에는 '1보다 큰 자연수는 오직 한 가지 방법에 의한 소수의 곱으로 나타내어진다.'는 정리가 소개되어 있다. 그러나 자연수를 더 작은 자연수로 분해하여 보겠다는 생각이 다항식에 적용되기까지는 2000여 년의 시간이 걸렸다. 독일의 수학자 가우스(Gauss, K. F. ; 1777~1855)는 '일차 이상의 다항식은 기약다항식의 곱으로 유일하게 인수분해된다.'는 것을 증명하였는데, 그 이후로 자연수에서 소인수분해가 했던 역할이 다항식의 인수분해에도 그.. 2015. 4. 27.
평균으로의 회귀 어떤 식당에서 식사를 하였는데, 그 맛이 매우 좋아 다시 그곳을 찾았다가 실망한 경험이 한 번쯤은 있을 것이다. 이처럼, 맨 처음에는 평균을 훨씬 뛰어넘지만 두 번째는 평균값 이하로 되돌아오는 현상을 '평균으로의 회귀(Regression toward the mean)' 또는 '평균으로의 퇴보'라고 한다. 이는 주사위의 눈으로 설명이 가능하다. 주사위를 한 번 던졌을 때 나오는 눈의 기댓값은 3.5이다. 주사위를 처음 던졌을 때 기댓값보다 높은 숫자가 나왔다고 하면 다음 번에는 작은 숫자가 나올 확률이 높다. 예를 들어, 처음에 4의 눈이 나왔다고 하자. 다음 번에 4보다 작은 수 1, 2, 3이 나올 확률은 이고, 5나 6이 나올 확률은 로 두 번째에는 작은 숫자가 나올 확률이 크다. 즉, 한 번 평균을.. 2014. 12. 27.
우박 수열 - 콜라츠 추측 독일의 수학자인 콜라츠(Collatz, L. ; 1910~1990)는 1937년에 다음과 같이 정의되는 자연수의 수열을 소개하였다. ❶ 이 홀수이면, ❷ 이 짝수이면, 이와 같은 수열이 어떤 성질을 갖는지 알아보자. 만약 이면 , , 이다.따라서 이 1, 2, 4인 경우에는 그 이후에 4, 2, 1이 반복되어 나타나게 된다. 예를 들면 다음과 같다. 이면 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 이면 5, 16, 8, 4, 2, 1, 4, 2, 1, … 이면 6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 아래의 그래프는 일 때의 수열 을 그래프로 나타낸 것이다. 이 그래프는 마치 롤러코스터처럼 상승과 하강을 반복하다가 4, 2, 1이 반복되면서 안정된다 .. 2014. 12. 12.
아르키메데스의 실진법 그리스의 아르키메데스(Archimedes ; B.C. 287~ B.C. 212)는 역사상 가장 위대한 수학자의 한 사람인데, 가장 훌륭한 수학적 업적 중의 하나로 적분법의 연구를 꼽을 수 있다. 그는 포물선과 직선으로 둘러싸인 도형의 넓이를 그 안에 포함된 삼각형들의 넓이의 합으로 구하는 방법을 생각하였다. 예를 들어 포물선 과 축으로 둘러싸인 도형을 생각해보자. 위의 그림과 같이 꼭짓점 A(-1, 0), B(1, 0), C(0, 1)인 삼각형 ABC의 넓이는 1이다. 또 두 점 과 에 대하여 이다. 또 네 점 , , , 에 대하여 다음이 성립한다. 아르키메데스는 이 도형 안에 삼각형이 아무리 많이 있더라도 위에서와 같이 각 삼각형마다 두 개의 새로운 삼각형을 넣을 수 있고, 이렇게 해서 증가하는 넓이는.. 2014. 12. 12.
해밀턴의 세계 일주 게임 19세기 영국의 수학자 해밀턴은 그래프와 관련된 여러 가지 재미있는 문제를 제기하였는데 그 중에는 아직까지 완전히 해결되지 않은 문제도 있다. '세계 일주 게임'은 그가 1857년에 소개한 것으로, 정십이면체의 20개의 각 꼭짓점에 세계의 유명한 도시의 이름을 붙인 후, 어느 한 도시를 출발하여 모서리를 따라 다른 도시를 모두 방문하고 처음 도시로 돌아오는 게임이다. 이때, 한 번 방문한 도시는 다시 방문하지 않는다. 해밀턴은 정십이면체를 평면그래프로 나타내어 이 문제를 다음 그림과 같이 해결하였다. 위의 게임에서와 같이 같은 길을 지나지 않고 주어진 그래프 상의 점을 모두 한 번씩 지나서 출발점으로 돌아올 수 있는 길을 '해밀턴 폐쇄로'라고 한다. 해밀턴 폐쇄로 문제는 '어떤 경우에 해밀턴 폐쇄로가 있.. 2014. 12. 5.
심슨의 역설(Simpson's Paradox) 영국의 통계학자인 심슨(Simpson, E. ; 1910~1961)은 1951년에 여러 개의 그룹을 합쳐 놓았을 때 각 그룹의 우열 관계가 뒤바뀌는 현상에 대하여 주목하였다. 예를 들어 새로 나온 어떤 약이 남녀 모두에게 이전의 약보다 더 좋은 효능을 보인다. 그러나 그 약은 전체적으로 볼 때 효능이 더 떨어진다. 혹은 어떤 회사는 직원을 채용할 때 남자보다 여자를 선호한다. 그러나 전체적으로 볼 때 여성의 채용 비율이 남성에 비하여 더 낮다. 이와 같이 동일하지 않은 가중치를 적용함에 따라 부분에 대한 분석 결과와 전체에 대한 분석 결과가 일치하지 않는 현상을 '심슨의 역설(Simpson's Paradox)'이라고 한다. 어느 대학에서 신입생의 합격률(지원자 수에 대한 합격자 수의 비율)을 조사한 결과.. 2014. 12. 5.