본문 바로가기

정신체조수학84

행렬을 이용한 암호화와 해독 암호는 주로 군사적인 목적으로 이용되어 왔으나, 인터넷과 정보 기술이 고도로 발달한 현대사회에서는 정보 보호의 중요한 수단이 되고 있다. 그러나 아무리 보안을 철저히 한다해도 암호를 푸는 기술 역시 함께 발전하여 왔으므로, 해독이 어려운 암호의 개발이 매우 중요한 과제가 되었다. 이때 이용되는 수학적 방법 중의 하나가 행렬이다. 암호화된 평문(平文, 일반 문장)의 뜻을 파악하려면 해독하는 작업이 필요한데, 그 방법의 하나로 행렬을 이용하는 것이다. 가령 행렬 를 이용하여 평문 MATH를 암호화하여 보자. 우선 다음과 같이 알파벳 A, B, C, …, Z에 각각 숫자 0, 1, 2, 3, …, 25를 대응시킨다. 0~25 이외의 숫자는 26의 배수를 더하거나 빼서 얻은 0~25 사이의 수와 같은 숫자로 간.. 2014. 12. 13.
우박 수열 - 콜라츠 추측 독일의 수학자인 콜라츠(Collatz, L. ; 1910~1990)는 1937년에 다음과 같이 정의되는 자연수의 수열을 소개하였다. ❶ 이 홀수이면, ❷ 이 짝수이면, 이와 같은 수열이 어떤 성질을 갖는지 알아보자. 만약 이면 , , 이다.따라서 이 1, 2, 4인 경우에는 그 이후에 4, 2, 1이 반복되어 나타나게 된다. 예를 들면 다음과 같다. 이면 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 이면 5, 16, 8, 4, 2, 1, 4, 2, 1, … 이면 6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 아래의 그래프는 일 때의 수열 을 그래프로 나타낸 것이다. 이 그래프는 마치 롤러코스터처럼 상승과 하강을 반복하다가 4, 2, 1이 반복되면서 안정된다 .. 2014. 12. 12.
아르키메데스의 실진법 그리스의 아르키메데스(Archimedes ; B.C. 287~ B.C. 212)는 역사상 가장 위대한 수학자의 한 사람인데, 가장 훌륭한 수학적 업적 중의 하나로 적분법의 연구를 꼽을 수 있다. 그는 포물선과 직선으로 둘러싸인 도형의 넓이를 그 안에 포함된 삼각형들의 넓이의 합으로 구하는 방법을 생각하였다. 예를 들어 포물선 과 축으로 둘러싸인 도형을 생각해보자. 위의 그림과 같이 꼭짓점 A(-1, 0), B(1, 0), C(0, 1)인 삼각형 ABC의 넓이는 1이다. 또 두 점 과 에 대하여 이다. 또 네 점 , , , 에 대하여 다음이 성립한다. 아르키메데스는 이 도형 안에 삼각형이 아무리 많이 있더라도 위에서와 같이 각 삼각형마다 두 개의 새로운 삼각형을 넣을 수 있고, 이렇게 해서 증가하는 넓이는.. 2014. 12. 12.
간단한(?) 멘사(Mensa) 퀴즈 세 개 (1) 5+3=28 9+1=810 8+6=214 5+4=19 then, 7+3=? (2) 5*2=11 2*4=14 3*2=7 4*5=30 then, 8*4=? (3) 3·4=14 5·5=36 2·6=13 then, 8·5=? · 멘사(Mensa) : 인구대비 상위 2%의 지능지수(표준편차 24 기준, IQ 148이상)를 가진 고지능자들의 가장 크고 오래된 모임 더보기 (1) 5-3=2, 5+3=8 ⇒ 28 9-1=8, 9+1=10 ⇒ 810 8-6=2, 8+6=14 ⇒ 214 5-4=1, 5+4=9 ⇒ 19 ∴ 7-3=4, 7+3=10 ⇒ 410 (2) 앞의 수부터 연속된 수를 뒤의 수의 개수만큼 더한다. 5*2=5+6=11 2*4=2+3+4+5=14 3*2=3+4=7 4*5=4+5+6+7+8=30 ∴ .. 2014. 12. 9.
음악 주사위 게임(Musical dice game) 천재 음악가인 모차르트(Mozart, W. A. ; 1756~1791)는 주사위를 이용하여 미뉴에트(minuet)를 작곡하는 방법을 많은 시행착오 끝에 고안하여 아래와 같은 표를 악보로 만들었다. 이는 16마디의 미뉴에트와 16마디의 트리오(trio)로 되어 있는데, 연주하기 전에 주사위를 던져서 서로 다른 음형 중 주사위 값에 해당하는 것을 선택하도록 되어 있다. 이 미뉴에트는 마디마다 11가지 음형이 있고 트리오에는 6가지 음형이 있다. 모차르트는 아래 그림과 같은 가로 16줄, 세로 11줄로 이루어진 표를 만들어 놓고 주사위 두 개를 동시에 던져서 나오는 숫자의 합으로 한 마디씩 골라 미뉴에트를 선택하고, 트리오는 주사위 한 개를 던져서 작곡했다고 한다. 흔히 이와 같은 작곡법을 '알리아토릭(ale.. 2014. 12. 8.
유휘의 할원술 중국의 위나라 사람인 유휘(劉徽, ?~?)는 263년에 의 주석을 썼는데, 이 책의 제1권 '방전(方田)'의 제31번과 제32번의 문제에 대한 주석에서 원주율의 근삿값을 구하는 일반적인 방법을 제시하였다. 유휘가 제1권 '방전' 제35, 36문의 활꼴 밭 문제에 대한 주석에서 제시했을 것이라고 청나라 산학자 대진(戴震, 1724~1777)이 추측한 그림 유휘는 원에 내접하는 정육각형의 변의 길이를 이용하여 그 원에 내접하는 정십이각형의 넓이를 구하고, 정십이각형의 변의 길이를 이용하여 정24각형의 넓이를 구하는 과정을 반복하여 정48각형, 정96각형, 정192각형의 넓이를 차례로 계산하였다.그 방법은 다음과 같다. 위의 그림에서 원O의 반지름의 길이를 이라 하고, 는 정각형의 한 변으로 이라 하자. 이제.. 2014. 12. 8.
비만도 산출 공식 우리는 생활하면서 유리식을 사용하는 경우가 많다. 그 중의 하나가 비만도 산출 공식이다. 비만도를 측정하는 공식으로 보통 많이 이용하는 것은 세계보건기구(WHO) 표준 비만도 산출 공식이다. 키가 이고 몸무게가 일 때, 비만도 산출 공식은 다음과 같다. 여기서 를 표준 체중이라고 한다. 여자의 경우 105를 빼기도 하지만, 보통은 남녀 구분 없이 100을 뺀다. 이렇게 구한 비만도에 따라 청소년과 성인의 비만 정도를 나타내면 다음과 같다. 예를 들어, 키가 인 성인의 몸무게가 일 때, 비만도를 구하면이다. 표에 따르면 이 사람은 정상에서 약간 벗어난 과체중이다. 위의 표를 보면 청소년들의 정상 범위가 어른보다 더 넓음을 알 수 있는데, 이는 청소년들은 아직 성장하는 과정 중에 있기 때문이다. 2014. 12. 6.
지문과 수학 추리소설 또는 텔레비전의 수사물에서 지문은 범인을 잡는 데 결정적인 증거가 된다. 지문은 그 모양과 형태에 따라 반원형 지문과 고리형 지문 그리고 소용돌이형 지문으로 구분된다. 반원형 지문은 지문선이 한쪽에서 들어와서 다른 쪽으로 나가는 평탄한 반원형 지문(A)과 지문선이 대칭적이고 가운데 부분이 마치 천막을 친 것과 같은 모양을 한 천막 모양의 반원형 지문(T)으로 나누어진다. 고리형 지문은 지문선이 왼쪽에서 시작하여 왼쪽으로 나가는 왼쪽 고리형 지문(U)과 지문선이 오른쪽에서 시작하여 오른쪽으로 나가는 오른쪽 고리형 지문(R)이 있다. 소용돌이형 지문(W)은 다음 그림과 같이 네 가지 종류가 있지만 모두 한 가지로 분류하고 있다. 이와 같은 지문의 형태는 반원형 지문이 전체의 5%, 고리형 지문이 전.. 2014. 12. 6.
해밀턴의 세계 일주 게임 19세기 영국의 수학자 해밀턴은 그래프와 관련된 여러 가지 재미있는 문제를 제기하였는데 그 중에는 아직까지 완전히 해결되지 않은 문제도 있다. '세계 일주 게임'은 그가 1857년에 소개한 것으로, 정십이면체의 20개의 각 꼭짓점에 세계의 유명한 도시의 이름을 붙인 후, 어느 한 도시를 출발하여 모서리를 따라 다른 도시를 모두 방문하고 처음 도시로 돌아오는 게임이다. 이때, 한 번 방문한 도시는 다시 방문하지 않는다. 해밀턴은 정십이면체를 평면그래프로 나타내어 이 문제를 다음 그림과 같이 해결하였다. 위의 게임에서와 같이 같은 길을 지나지 않고 주어진 그래프 상의 점을 모두 한 번씩 지나서 출발점으로 돌아올 수 있는 길을 '해밀턴 폐쇄로'라고 한다. 해밀턴 폐쇄로 문제는 '어떤 경우에 해밀턴 폐쇄로가 있.. 2014. 12. 5.
심슨의 역설(Simpson's Paradox) 영국의 통계학자인 심슨(Simpson, E. ; 1910~1961)은 1951년에 여러 개의 그룹을 합쳐 놓았을 때 각 그룹의 우열 관계가 뒤바뀌는 현상에 대하여 주목하였다. 예를 들어 새로 나온 어떤 약이 남녀 모두에게 이전의 약보다 더 좋은 효능을 보인다. 그러나 그 약은 전체적으로 볼 때 효능이 더 떨어진다. 혹은 어떤 회사는 직원을 채용할 때 남자보다 여자를 선호한다. 그러나 전체적으로 볼 때 여성의 채용 비율이 남성에 비하여 더 낮다. 이와 같이 동일하지 않은 가중치를 적용함에 따라 부분에 대한 분석 결과와 전체에 대한 분석 결과가 일치하지 않는 현상을 '심슨의 역설(Simpson's Paradox)'이라고 한다. 어느 대학에서 신입생의 합격률(지원자 수에 대한 합격자 수의 비율)을 조사한 결과.. 2014. 12. 5.
다기망양(多岐亡羊)과 미로 미로라고 하면 종이 위에 그려진 퍼즐이나 어린이 공원 같은 데 있는 미로를 생각하겠지만, 미로는 인간의 실생활에서도 쉽게 볼 수 있다. 미로가 실생활에 사용된 실제적인 예는 고대 이집트의 피라미드에서 찾아볼 수 있다. 피라미드 속에는 죽은 왕과 함께 갖가지 보물들을 넣어 두었는데, 그 보물들을 도적이 훔쳐가지 못하도록 하기 위해 미로를 만들었다. 모험 영화인 ‘인디애나 존스’, ‘미이라’, ‘해리포터’에서도 미로를 헤매고 다니는 주인공들을 흔히 볼 수 있다. 이 밖에도 유럽에서는 궁전의 안뜰에 미로를 만들어 공격해 온 적을 안으로 유인해 전멸시켰다는 전설도 있다. 영국의 브라이트라는 사람은 라는 책을 쓰고, 1971년에는 1.6km이상 되는 미로 정원을 만들었다고 한다. 그 후, 그는 런던의 서쪽 롤리트.. 2014. 10. 20.
넓이와 부정적분 사이의 관계 함수 와 축 사이의 넓이를 구하는 데 부정적분을 이용한다는 사실은 이미 잘 알려져 있다. 그렇다면 이 정리를 처음 생각해 내고 증명한 사람은 누구일까? 수학사에서 알려진 것에 의하면 뉴턴의 스승인 영국의 수학자 배로(Barrow, I.: 1630~1677)가 처음으로 생각하고 증명하였다고 한다. 배로는 기하학적 방법으로 증명하였는데 그 증명 개요는 다음과 같다. 다음 그림과 같이 한 곡선 가 주어지고, 그 곡선 위에 각 점까지 그 곡선과 축 사이의 넓이를 나타내는 곡선 가 있다고 하자. 여기에서 를 가 되도록 잡으면 직선 는 접선이 된다. 이 정리를 다음과 같이 기호로 나타낼 수 있다. 접선의 기울기 즉, 넓이의 변화율이 함숫값이 된다. 따라서 원함수 의 부정적분을 구하면 넓이 함수 이고, 특정 구간 에.. 2014. 9. 5.
문제 해결의 수학적 전략 - Steven G. Krantz ◆ 질문하는 방법을 배워라. 정확하게 진술하고 명확하게 질문하는 것을 익히는 것도 배우는 과정의 한 부분이다. ...... 일반적인 교육에서 또 다른 중요한 부분은 읽는 법을 배우는 것이다. 이는 단순히 읽고 쓸 수 있는 능력을 갖추는 것만을 의미하지는 않는다. 그 대신에 하나의 문제, 또는 분석적인 구절이나 문제의 해답을 읽고, 문제의 밑바닥으로 가서 문제를 완전히 이해하고 결국에는 자신의 것으로 만드는 것을 의미한다. 이런 말들을 이해하고 있다면 문제는 해결된 것이다. ◆ 문제 풀이에 유능한 사람은 주어진 문제를 좀더 간단한 문제 또는 일련의 간단한 문제로 귀착시키는 데 능숙한 사람이다. ◆ 문제를 푸는 그 자체보다 '문제를 해결하려는 노력'이 언제나 가치 있는 것이 될 것이다. 2011/04/22 .. 2014. 8. 19.
동전 옮기기 게임 그림과 같이 인접한 여덟 개의 정사각형으로 이루어진 판을 가지고 게임을 한다. 처음에 세 개의 동전이 그림과 같이 놓여 있다. 규칙은 한 개의 동전을 왼쪽으로 한 칸씩 옮기는 것이다. 각각의 동전은 다른 동전의 위 또는 아래에 겹칠 수 있다. 목표는 모든 동전을 가장 왼쪽 끝으로 옮기는 것이다. 마지막으로 동전을 옮기는 사람이 이긴다고 할 때, 먼저 시작하는 사람이 이 게임에서 이기기 위한 전략은 무엇인가? 더보기 동전은 단지 왼쪽으로만 옮길 수 있고 오른쪽으로 결코 옮기지 못함을 주목하자. 왼쪽에 있는 동전부터 차례로 1번, 2번, 3번이라 하자. 게임을 한 번 할 때마다 1번 동전은 모두 세 번 움직여서 가장 왼쪽의 칸에 옮길 수 있다. 2번 동전은 모두 다섯 번 움직여서 가장 왼쪽의 칸에 옮길 수 .. 2014. 8. 16.
결혼 문제 한 청년이 성년이 되었다. 그의 목표는 결혼하는 것이었다. 신부감을 찾기 위해 최대 100명의 여자와 데이트를 하기로 결심하였다. 여자와 잠시 데이트를 한 후, 그녀와 결혼을 하든지 그녀를 거절하고 계속해서 다른 여자를 만나보아야 했다. 일단 한 여자를 거절하면 다시는 그 여자를 만날 수 없다. 결국 오직 한 여자만을 선택하여 결혼해야 한다. 이 문제에서 흥미로운 점은 이 청년이 이미 만났던 여자에 대해서는 뒤돌아 볼 수 없지만 앞으로 만날 여자에 대해서는 미리 볼 수 없다는 것이다. 언제든지 청년은 "지금 만나고 있는 여자는 더욱 매력적이야, 그리고 이전에 만났던 어느 여자보다도 나에게 어울리는 것 같아"라 말하면서 그녀와 결혼할 것을 결정할 수 있다. 하지만 청년은 "이 여자는 멋있어. 하지만 더욱 .. 2014. 8. 11.
37장의 편지 37장의 편지를 쓴 다음 37장의 봉투에 주소를 적는다고 가정하자. 눈을 감고 무작위로 편지를 각각의 봉투에 하나씩 집어넣을 때, 단 한 장의 봉투에만 편지가 잘못 들어갈 확률은 얼마인가? 더보기 각각의 편지와 봉투에 1~37까지의 번호가 매겨져 있다고 하자. 1~36번까지의 편지가 봉투에 제대로 들어가 있다면, 남아 있는 것은 37번 편지와 37번 봉투일 것이다. 따라서 마지막에 남은 편지는 봉투에 제대로 들어갈 수밖에 없다. 물론 여기서 사용된 번호 매김에는 특별한 것이 없다. 이는 단지 단 한 장의 편지만이 봉투에 잘못 들어가는 것은 불가능하다는 아주 간단한 사실만을 알려줄 뿐이다. 한 장의 편지가 봉투에 잘못 들어 있다면, 적어도 두 장의 편지는 봉투에 잘못 들어가는 것이 된다. 따라서 구하는 확.. 2014. 8. 6.
여섯 명 중 세 사람 방 안에 여섯 명이 있다고 하자. 이들 중 세 사람은 서로 알고 있거나, 아니면 서로 모르는 경우가 있는데 그 이유를 설명하라. 물론 A가 B를 알고 있다면 B도 역시 A를 알고 있는 것으로 가정한다. 더보기 이들 중 한 사람을 조라고 하자. 조는 나머지 다섯 명 중에서 세 명을 알고 있든지, 아니면 세 명을 전혀 모르든지 둘 중의 하나이다. 첫 번째의 경우를 생각해 보자. 가령 조가 실제로 해리, 메리, 래리를 알고 있다고 가정하자. 이들 중 어느 두 사람이 서로 알고 있다면(예를 들면, 해리가 래리를 알고 있다), {조, 해리, 래리}는 서로 알고 있는 사이가 된다. 대신에 어떤 두 사람도 서로 모르는 사이라면 {해리, 메리, 래리}는 서로를 모르는 사람들이다. 위의 문제는 다음과 같이 재해석할 수 .. 2014. 8. 6.
짜장면과 종이접기 우리는 종종 어떤 것을 반으로 나누는 것을 대수롭지 않게 여긴다. 하지만 자연수 중에서 1을 제외하고 가장 작은 수 2와 그것의 역수인 ‘반’, 즉 1/2의 위력은 우리가 생각하고 있는 것 이상으로 대단하다. 종이접기를 이용하여 반으로 나누는 것에 관하여 알아보자. 외국에서는 이 종이 반접기가 꾸준한 토론 거리가 될 만큼 관심을 받고 있다. 그리고 2001년 12월에 종이를 반으로 접는 문제를 ‘수학적으로’ 풀어낸 사람이 있었다. 당시 고등학생이었던 ‘브리트니 걸리반(Britney Gallivan)’이라는 여성은 종이를 반으로 접는 것에 관한 공식을 찾았을 뿐만 아니라 종이를 무려 12번 접어 보여 주위를 깜짝 놀라게 했다. 종이가 아무리 거대하거나 혹은 그 두께가 상상을 초월할 만큼 얇다하더라도 8번 .. 2014. 7. 21.
2014년은 갑오년, 이름은 어떻게 정할까? 2013년은 계사년(癸巳年)이었고 올해 2014년은 갑오년(甲午年)으로 불린다. 올해는 말의 해, 특히 ‘청마(靑馬)의 해’라고 한다. 매년 바뀌는 한 해의 이름들은 어떤 원리로 지어지는 걸까? 올해가 말의 해인 것처럼 매년 한 해를 책임질 동물이 정해진다. 사람의 띠를 나타내는 12 동물인 자(子, 쥐), 축(丑, 소), 인(寅, 호랑이), 묘(卯, 토끼), 진(辰, 용), 사(巳, 뱀), 오(午, 말), 미(未, 양), 신(申, 원숭이), 유(酉, 닭), 술(戌, 개), 해(亥, 돼지)를 땅에 사는 인간을 이롭게 한다하여 지지(地支)라고 한다. 또 하늘의 운행을 나타내는 10개의 갑(甲), 을(乙), 병(丙), 정(丁), 무(戊), 기(己), 경(庚), 신(辛), 임(壬), 계(癸)를 천간(天干)이라.. 2014. 1. 23.
That's Real Life 2013. 12. 17.
고교 수학 새 교육 과정(2014년 고1 적용) 2014년 고1부터 적용되는 고교 수학 새 교육과정을 한 눈에 알아보기 쉽도록 정리해 보았습니다. 이미지를 클릭하시면 좀더 선명하게 보실 수 있습니다. 참고하시어 학습 계획 세우는 데 모쪼록 도움이 되길 바랍니다. Excel로 제작한 것인데 혹시 원본 파일이 필요하신 분은 댓글로 이메일주소 남겨주시면 보내드리겠습니다. 2013. 12. 12.
4차원 공간 차원은 각각의 공간 속에서 점을 독립적으로 지정하는 데 필요한 좌표의 수를 지칭하는 개념이다. 직선 위의 점은 기준점을 설정하고 한 개의 변수를 사용하여 로 나타낼 수 있으므로, 직선은 1차원 공간이다. 좌표평면은 그 위의 점을 두 개의 변수를 사용하여 로 나타낼 수 있으므로 2차원 공간이다. 교과서에서 공부한 좌표공간은 그 위의 점을 세 개의 변수를 사용하여 로 나타낼 수 있으므로 3차원 공간이다. 이와 같은 생각을 확장하여 일반적인 n차원 좌표공간을 와 같이 나타낼 수 있다. 3차원 공간의 세 좌표축에 모두 수직인 제4의 좌표축을 갖는 공간이 4차원 공간이다. 4차원 공간은 실재하지 않는 추상적 공간으로 여겨지기도 하지만, 물리학이나 우주론의 이론을 설명하는 데 사용된다. 아인슈타인(Einstein,.. 2013. 3. 25.
심리 역이용 게임 수학자 호프스태터는 그의 저서 『괴델, 에스허르, 바흐』에서 매우 흥미로운 게임 하나를 소개하고 있다. 두 사람이 노는 게임으로 그 어떤 카드도 말도 필요 없고, 오직 두 개의 손만 있으면 되는 게임이다. 신호와 함께 두 참가자는 각자 손을 내밀고, 1에서 5까지의 수 중 하나를 손가락으로 표시한다. 이때 더 높은 수를 낸 사람이 두 사람이 낸 수의 차이만큼을 점수로 얻는다. 예를 들어 한 사람이 5를 내고, 한 사람이 3을 냈다면, 5를 낸 사람이 5-3, 즉 2점을 획득한다. 그렇게 해서 얻은 점수를 0점부터 더해 나간다. 그렇다면 언제든 5만 내면 될 것 아닌가? ......하지만 이 첫 번째 규칙을 보충하는 두 번째 규칙이 있다. 두 사람 사이의 차이가 1점이 되는 경우, 작은 수를 낸 사람이 두.. 2013. 1. 31.
자동차의 경제속도는? 자동차에 쓰이는 연료는 자동차를 움직이는 데 꼭 필요한 것이지만 그 배출 가스는 환경 오염의 원인이 되고 있다. 따라서 환경 오염을 줄이기 위해서는 연료를 될 수 있는 대로 적게 소모해야 한다. 연료를 절감하는 방법 중의 하나로 경제속도가 있다. 이는 가장 적은 연료로 가장 먼 거리를 달릴 수 있는 속도를 뜻한다. 경제속도를 구하는 방법을 알아보자. 아래의 그래프는 어떤 자동차의 속도에 따른 시간당 연료 소모량을 나타낸 것이다. 자동차는 시동을 건 상태로 정지해 있는 경우에도 연료가 소모된다. 자동차가 움직이기 시작하면 시간당 연료 소모량은 감소하는데, 그래프에서 보는 것처럼 시속 60km 정도에서 시간당 연료 소모량이 최소가 된다. 이 자동차의 연비( km/L)는 언뜻 보기에 이때가 최대인 것처럼 보이.. 2012. 11. 2.
진자의 등시성 2012. 11. 2.
4? 3? 관련글 : 2011/05/11 - [정신체조수학] - 에셔의 불가능한 도형들 2012. 3. 26.
고등학교 수학과 교과목 신설 계획 경기도 교육청에서 내려온 공문인데 스캔이 여의치 않아 주요 내용을 직접 정리해 보았습니다. 1. 관련 : 고등학교 교육과정 선진화 모형(2010.05.) 2. 고등학교 수학과 교과목 신설 계획을 다음과 같이 알려 드리니 각 학교에서는 교육과정 운영에 참고하시기 바랍니다. 가. 신설 교과목명 및 신설 취지 1) 과목명 : 수학연습Ⅰ 신설 취지 : 인문, 예체능 과정 학생의 대학입학 준비를 위한 과목 - 내용 : 수학, 수학Ⅰ, 미적분과 통계 기본 포함 2) 과목명 : 수학연습Ⅱ 신설 취지 : 자연이공 과정 학생의 대학입학 준비를 위한 과목 - 내용 : 수학, 수학Ⅰ, 수학Ⅱ, 적분과 통계, 기하와 벡터 포함 ※ 고등학교 교육과정 선진화 모형에서 신설하기로 한 교과목 중 수학연습Ⅰ, 수학연습Ⅱ만 신설함 나... 2011. 6. 6.
수학에 대한 분노 2011. 4. 25.
타일 깔기 가로 세로가 각각 8인 정사각형 모양의 욕실 바닥에 가로가 2 세로가 1인 직사각형 모양의 타일을 깔려고 합니다. 그런데 이 욕실은 왼쪽 상단 귀퉁이엔 변기가 있고, 오른쪽 하단 귀퉁이엔 하수구가 있어서 변기가 있는 곳과 하수구가 있는 곳엔 타일을 깔지 못합니다. 그러나 이렇게 저렇게 깔아봐도 빈틈없이 다 메워지지 않는데요, 어떻게 하면 빈틈없이 욕실 바닥을 다 메울 수 있을까요? 타일을 빈틈없이 다 깔 수 있다면 그 방법을 소개하고 타일을 빈틈없이 깔 수 없다면 왜 그런지 설명해 보세요. 더보기 빈틈없이 타일을 다 메울 수는 없습니다. 욕실 바닥을 정사각형 모양으로 나눈 뒤, 체스판 모양으로 색칠하게 되면 타일을 한 장 깔 때마다 반드시 검정색 부분과 흰색 부분이 하나씩 덮이게 되지요. 즉 타일을 빈틈.. 2011. 4. 22.
전화번호 민우는 책상 앞에 앉아서 뭔가 열심히 계산을 하고 있다. "아버지, 외삼촌 댁의 전화번호가 9638이지요?"하고 그는 말했다. "그리고 외갓집 전화번호는 2591이고요?" "그렇지, 그리고 우리집은 8739라는 것도 잊지 않고 있단다."라고 아버지께서 말씀하셨다. "그런데 그건 왜?" "재미있는 것을 발견했어요. 그 3개의 수에 대해서 계산을 좀 해 봤어요." 민우는 대답했다. "그것들은 1 이외의 어떤 특별한 양의 정수로 나누면 모두 나머지가 같아지는 것을 발견했어요." 민우가 발견한 그 특별한 양의 정수는 얼마인가? 더보기 9638, 8739, 2591은 모두 어떤 특별한 정수로 나누면 나머지가 같으므로 9638-8739=899는 그 특별한 정수로 나누어 떨어진다. 마찬가지로 8739-2591=614.. 2011. 4. 22.