본문 바로가기

수학사3

이차방정식의 역사 옛날 사람들이 이차방정식을 언제부터 알고 있었으며 어떻게 풀었는지에 대한 정확한 기록은 남아있지 않지만, 기원전 1800년을 전후해서 이미 간단한 이차방정식을 풀 수 있었던 것으로 짐작된다. 이 무렵 육십진법을 썼던 고대 바빌로니아 사람들은 이미 와 같은 이차방정식을 풀어서 과 같이 계산하였으며, 인 경우에 의 근을 와 같이 구했다고 한다. 지금과 같이 완전히 일반적인 경우는 아니지만 이차방정식의 근의 공식을 처음으로 찾은 사람은 인도의 수학자인 브라마굽타(Brahmagupta ; 598~670)인데, 628년에 그가 쓴 이라는 책에서 의 근을 와 같이 나타내었다. 지금과 같은 완전한 근의 공식은 12세기 인도 최고의 수학자였던 바스카라(Bhaskara ; 1114~1185)에 의하여 완성되었다. 이차방.. 2014. 12. 18.
유휘의 할원술 중국의 위나라 사람인 유휘(劉徽, ?~?)는 263년에 의 주석을 썼는데, 이 책의 제1권 '방전(方田)'의 제31번과 제32번의 문제에 대한 주석에서 원주율의 근삿값을 구하는 일반적인 방법을 제시하였다. 유휘가 제1권 '방전' 제35, 36문의 활꼴 밭 문제에 대한 주석에서 제시했을 것이라고 청나라 산학자 대진(戴震, 1724~1777)이 추측한 그림 유휘는 원에 내접하는 정육각형의 변의 길이를 이용하여 그 원에 내접하는 정십이각형의 넓이를 구하고, 정십이각형의 변의 길이를 이용하여 정24각형의 넓이를 구하는 과정을 반복하여 정48각형, 정96각형, 정192각형의 넓이를 차례로 계산하였다.그 방법은 다음과 같다. 위의 그림에서 원O의 반지름의 길이를 이라 하고, 는 정각형의 한 변으로 이라 하자. 이제.. 2014. 12. 8.
넓이와 부정적분 사이의 관계 함수 와 축 사이의 넓이를 구하는 데 부정적분을 이용한다는 사실은 이미 잘 알려져 있다. 그렇다면 이 정리를 처음 생각해 내고 증명한 사람은 누구일까? 수학사에서 알려진 것에 의하면 뉴턴의 스승인 영국의 수학자 배로(Barrow, I.: 1630~1677)가 처음으로 생각하고 증명하였다고 한다. 배로는 기하학적 방법으로 증명하였는데 그 증명 개요는 다음과 같다. 다음 그림과 같이 한 곡선 가 주어지고, 그 곡선 위에 각 점까지 그 곡선과 축 사이의 넓이를 나타내는 곡선 가 있다고 하자. 여기에서 를 가 되도록 잡으면 직선 는 접선이 된다. 이 정리를 다음과 같이 기호로 나타낼 수 있다. 접선의 기울기 즉, 넓이의 변화율이 함숫값이 된다. 따라서 원함수 의 부정적분을 구하면 넓이 함수 이고, 특정 구간 에.. 2014. 9. 5.