오일러4 이차방정식의 근과 복소수의 탄생 문자가 들어 있는 식 가운데 가장 중요한 것이 방정식이다. 방정식의 종류는 여러 가지인데 최고차항의 차수에 따라 1, 2차방정식 등이라 부르고, 여러 방정식을 동시에 고려할 경우 연립방정식이라 한다. 이들 방정식과 연립방정식을 구하는 일은 역사적으로 끊임없이 연구되고 계속적으로 발전되어 왔다. 실제 문제를 푸는 데 어떤 수라는 말 대신 x와 같은 문자를 사용하여 푸는 방법을 도입한 사람은 그리스의 대수학자 디오판토스(246~330)로 그는 대수학을 수학의 정상에 올려놓았다. 그의 책 「산수론(Arithmetica)」은 대수학에서의 ‘유클리드 기하학 원론’으로 비유되고 있다. 그의 묘비에 새겨진 다음과 같은 비문은 그가 생각해 낸 미지수를 이용한 일차방정식의 풀이를 이용하면 그 해답을 쉽게 구할 수 있다... 2022. 12. 19. 페르마의 마지막정리 다음의 정리를 『페르마(Fermat)의 대정리』 혹은 『Fermat의 마지막정리』라고 한다. 페르마는 직업적인 수학자가 아니라, 툴르즈 지방 의회에 소속된 법률가이자 치안 판사였다. 그는 수학에 대한 정규 교육을 받은 적도 없었지만, 수학에 강렬한 애착을 갖게 되었다. 그는 자신의 생존 기간 중 수학에 대해 사실상 아무 것도 출판하지 않았다. 그러나 그는 당시의 위대한 수학자들과 매우 많은 서신 왕래를 하였다. 이 유명한 마지막정리의 형식화에 이르는 과정은 매우 흥미롭다. 1453년 콘스탄티노플이 터키에 의해 함락되었을 때 비잔틴 학자들은 고대 그리스 문헌을 갖고 서유럽으로 피신했다. 그 중에는 당시까지 보관되던 디오판토스의 산학(arithemetica)이 있었다. 이 책은 후에 1621년 중 그리스 문.. 2020. 7. 16. 세상의 모든 공식 - 존 M. 헨쇼 ◆ 세상에는 오로지 10가지 인간이 존재할 뿐이다. 이진법을 아는 인간과 그렇지 못한 인간. ◆ π와 관련된 경쟁은 또 있다. 이 경쟁은 더 오싹하다. 여기에는 귀와 귀 사이의 피와 살로 된 컴퓨터가 동원된다. 바로 π값 외우기 경쟁이다. 기록이 꾸준히 갱신된 끝에, 현재 기록보유자는 6만 7,890자릿수까지 외워서 기네스북에 오른 어떤 중국인이다. 이 사람은 총 24시간 4분에 걸쳐서, 숫자 하나당 1.28초의 속도로, π를 6만 7,890자리까지 한 번도 틀리지 않고 암송했다. ◆ 수학자 겸 작가 데이비드 웰스(David Wells)가 수학공식의 아름다움을 평가하는 나름의 판단기준을 제시했다. 웰스에 따르면, 아름다운 수학공식의 조건은 단순함, 간결함, 중요성, 놀라움이다. 오일러 항등식(Euler'.. 2019. 11. 5. 다기망양(多岐亡羊)과 미로 미로라고 하면 종이 위에 그려진 퍼즐이나 어린이 공원 같은 데 있는 미로를 생각하겠지만, 미로는 인간의 실생활에서도 쉽게 볼 수 있다. 미로가 실생활에 사용된 실제적인 예는 고대 이집트의 피라미드에서 찾아볼 수 있다. 피라미드 속에는 죽은 왕과 함께 갖가지 보물들을 넣어 두었는데, 그 보물들을 도적이 훔쳐가지 못하도록 하기 위해 미로를 만들었다. 모험 영화인 ‘인디애나 존스’, ‘미이라’, ‘해리포터’에서도 미로를 헤매고 다니는 주인공들을 흔히 볼 수 있다. 이 밖에도 유럽에서는 궁전의 안뜰에 미로를 만들어 공격해 온 적을 안으로 유인해 전멸시켰다는 전설도 있다. 영국의 브라이트라는 사람은 라는 책을 쓰고, 1971년에는 1.6km이상 되는 미로 정원을 만들었다고 한다. 그 후, 그는 런던의 서쪽 롤리트.. 2014. 10. 20. 이전 1 다음