본문 바로가기

아르키메데스2

아르키메데스의 실진법 그리스의 아르키메데스(Archimedes ; B.C. 287~ B.C. 212)는 역사상 가장 위대한 수학자의 한 사람인데, 가장 훌륭한 수학적 업적 중의 하나로 적분법의 연구를 꼽을 수 있다. 그는 포물선과 직선으로 둘러싸인 도형의 넓이를 그 안에 포함된 삼각형들의 넓이의 합으로 구하는 방법을 생각하였다. 예를 들어 포물선 과 축으로 둘러싸인 도형을 생각해보자. 위의 그림과 같이 꼭짓점 A(-1, 0), B(1, 0), C(0, 1)인 삼각형 ABC의 넓이는 1이다. 또 두 점 과 에 대하여 이다. 또 네 점 , , , 에 대하여 다음이 성립한다. 아르키메데스는 이 도형 안에 삼각형이 아무리 많이 있더라도 위에서와 같이 각 삼각형마다 두 개의 새로운 삼각형을 넣을 수 있고, 이렇게 해서 증가하는 넓이는.. 2014. 12. 12.
유휘의 할원술 중국의 위나라 사람인 유휘(劉徽, ?~?)는 263년에 의 주석을 썼는데, 이 책의 제1권 '방전(方田)'의 제31번과 제32번의 문제에 대한 주석에서 원주율의 근삿값을 구하는 일반적인 방법을 제시하였다. 유휘가 제1권 '방전' 제35, 36문의 활꼴 밭 문제에 대한 주석에서 제시했을 것이라고 청나라 산학자 대진(戴震, 1724~1777)이 추측한 그림 유휘는 원에 내접하는 정육각형의 변의 길이를 이용하여 그 원에 내접하는 정십이각형의 넓이를 구하고, 정십이각형의 변의 길이를 이용하여 정24각형의 넓이를 구하는 과정을 반복하여 정48각형, 정96각형, 정192각형의 넓이를 차례로 계산하였다.그 방법은 다음과 같다. 위의 그림에서 원O의 반지름의 길이를 이라 하고, 는 정각형의 한 변으로 이라 하자. 이제.. 2014. 12. 8.