본문 바로가기

라플라스4

극한의 엄밀한 정의 미적분을 공부하다 보면 코시라는 수학자의 이름을 자주 듣게 된다. 특히 '코시-슈바르츠의 부등식'을 알고 있는 사람이면 코시라는 수학자의 이름을 이미 들어 봤을 것이다.그는 수학과 물리학에 업적이 많다. 특히 극한이라는 개념의 엄밀한 정의를 만드는데 기초를 마련한 사람이다. 또한 과학아카데미에서 논문의 분량을 4페이지로 제한한 이유가 코시의 논문 양이 매우 많아서였기 때문이었다고 하는 웃지 못할 일화의 주인공이기도 하다.코시는 프랑스 혁명 시기에 파리에서 태어났다. 정치적 혼란으로 인해 자주 이사를 했기 때문에 아버지에게 교육을 받았다. 그런데 당대 최고의 수학자인 라플라스와 라그랑주에게 재능을 인정받아 그들은 그에게 수학 공부를 권유하게 되었다. 1805년에 에콜 폴리테크니크에 입학하여 공학을 전공하고.. 2020. 8. 23.
라플라스의 마녀 - 히가시노 게이고 ◆ "내 눈에 보였던 것이 모든 것, 이라고 하면 되지 않겠느냐" ◆ "절대 아무한테도 말하지 않는다고 약속해도 안 돼?" "안 되지. 그런 약속은 믿을 게 못 된다는 거, 너도 잘 알잖아?" ◆ "미래가 어떻게 될지 모르기 때문에 사람은 꿈을 가질 수 있습니다" ◆ "얼핏 보기에 아무 재능도 없고 가치도 없어 보이는 사람들이야말로 중요한 구성 요소야. 인간은 원자야. 하나하나는 범용하고 무자각적으로 살아갈 뿐이라 해도 그것이 집합체가 되었을 때, 극적인 물리법칙을 실현해내는 거라고. 이 세상에 존재 의의가 없는 개체 따위는 없어. 단 한 개도." ★★★☆☆ 나비에 스토크스 방정식과 라플라스 이론이 궁금하다면 맛을 좀 볼 수 있다. 2018. 10. 1.
정규분포의 역사 정규분포(正規分布, normal distribution)에 대한 연구는 지난 수 세기에 걸쳐 이루어져 왔다. 프랑스의 수학자 라플라스(Laplace, P. S. ; 1749~1827)와 독일의 수학자 가우스(Gauss, K. F. ; 1777~1855) 등에 의하여 수학적인 체계가 갖추어 졌으며, 이후 물리학, 천문학 분야의 여러 학자들에 의하여 실제 자료를 설명하는 데 정규분포가 유용함이 확인되었다. 정규분포가 모든 자료를 설명할 수 있는 것은 아니지만 여러 분야에 가장 널리 이용되고 있는 확률분포이다. 정규분포는 프랑스의 수학자 드무아브르(de Moivre, A. ; 1667~1754)의 1733년 논문에서 처음으로 도입되었다. 드무아브르는 이항분포에서 시행 횟수 n이 클 때 확률의 근삿값을 극한을 .. 2014. 12. 11.
로그의 역사 네이피어(Napier, J. ; 1550∼1617) 17세기 초 망원경의 발명으로 천문학, 항해술, 삼각법이 급속히 발달하였고, 이에 따라 방대하고도 복잡한 천문학상의 계산을 하기 위해 새로운 계산 기술이 절실히 요구되었다. 이러한 시대적인 요구에 따라 네이피어는 새로운 계산 방법인 로그를 발명하였다. 로그의 개념을 쓰면 크고 복잡한 곱셈 문제를 간단한 덧셈 문제로 바꿀 수 있기 때문에 라플라스(Laplace, P. S. ; 1749∼1827)가 “천문학자의 수고를 덜어줌으로써 그들의 수명을 두 배로 늘렸다.”라고 말했을 정도로, 로그의 발명은 수학사에 길이 남는 매우 획기적인 것이었다. 네이피어가 정의한 로그의 개념은 다음과 같다. 아래의 그림과 같이 선분 AB와 반직선 CD에서 점 P와 점 Q가 동시.. 2014. 11. 28.