본문 바로가기

수학의 난제2

우박 수열 - 콜라츠 추측 독일의 수학자인 콜라츠(Collatz, L. ; 1910~1990)는 1937년에 다음과 같이 정의되는 자연수의 수열을 소개하였다. ❶ 이 홀수이면, ❷ 이 짝수이면, 이와 같은 수열이 어떤 성질을 갖는지 알아보자. 만약 이면 , , 이다.따라서 이 1, 2, 4인 경우에는 그 이후에 4, 2, 1이 반복되어 나타나게 된다. 예를 들면 다음과 같다. 이면 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 이면 5, 16, 8, 4, 2, 1, 4, 2, 1, … 이면 6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, … 아래의 그래프는 일 때의 수열 을 그래프로 나타낸 것이다. 이 그래프는 마치 롤러코스터처럼 상승과 하강을 반복하다가 4, 2, 1이 반복되면서 안정된다 .. 2014. 12. 12.
해밀턴의 세계 일주 게임 19세기 영국의 수학자 해밀턴은 그래프와 관련된 여러 가지 재미있는 문제를 제기하였는데 그 중에는 아직까지 완전히 해결되지 않은 문제도 있다. '세계 일주 게임'은 그가 1857년에 소개한 것으로, 정십이면체의 20개의 각 꼭짓점에 세계의 유명한 도시의 이름을 붙인 후, 어느 한 도시를 출발하여 모서리를 따라 다른 도시를 모두 방문하고 처음 도시로 돌아오는 게임이다. 이때, 한 번 방문한 도시는 다시 방문하지 않는다. 해밀턴은 정십이면체를 평면그래프로 나타내어 이 문제를 다음 그림과 같이 해결하였다. 위의 게임에서와 같이 같은 길을 지나지 않고 주어진 그래프 상의 점을 모두 한 번씩 지나서 출발점으로 돌아올 수 있는 길을 '해밀턴 폐쇄로'라고 한다. 해밀턴 폐쇄로 문제는 '어떤 경우에 해밀턴 폐쇄로가 있.. 2014. 12. 5.