본문 바로가기

복소수2

대수학의 기본 정리 대수학의 기본 정리(fundamental theorem of algebra)는 수학자 가우스(1777~1855)에 의해 처음으로 (비교적 엄밀히) 증명되었다. 가우스에 의해 증명된 대수학의 기본 정리는 다음과 같다.(여기서 n차방정식은 한 문자에 대한 n차 다항방정식을 가리킨다고 약속하자.) · 대수학의 기본 정리 복소수 계수의 n차방정식은 적어도 하나의 복소수 근을 갖는다.(단, n은 자연수) 거창해 보이는 이름에 비하면 정리 자체는 별 내용도 없는 것처럼 보인다. 하지만 이를 증명하기 위해 많은 수학자의 시도와 실패가 있었다. 그러던 중 1799년 가우스가 박사 학위 논문에서 최초로 이 정리를 증명하였고, 이를 바탕으로 대수학의 기존 정리는 다른 정리들과 합쳐져서 다음과 같은 강력한 사실을 알려주었다.. 2022. 12. 23.
이차방정식의 근과 복소수의 탄생 문자가 들어 있는 식 가운데 가장 중요한 것이 방정식이다. 방정식의 종류는 여러 가지인데 최고차항의 차수에 따라 1, 2차방정식 등이라 부르고, 여러 방정식을 동시에 고려할 경우 연립방정식이라 한다. 이들 방정식과 연립방정식을 구하는 일은 역사적으로 끊임없이 연구되고 계속적으로 발전되어 왔다. 실제 문제를 푸는 데 어떤 수라는 말 대신 x와 같은 문자를 사용하여 푸는 방법을 도입한 사람은 그리스의 대수학자 디오판토스(246~330)로 그는 대수학을 수학의 정상에 올려놓았다. 그의 책 「산수론(Arithmetica)」은 대수학에서의 ‘유클리드 기하학 원론’으로 비유되고 있다. 그의 묘비에 새겨진 다음과 같은 비문은 그가 생각해 낸 미지수를 이용한 일차방정식의 풀이를 이용하면 그 해답을 쉽게 구할 수 있다... 2022. 12. 19.